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Abstract. We describe a new method for recovering the blur kernel
in motion-blurred images based on statistical irregularities their power
spectrum exhibits. This is achieved by a power-law that refines the one
traditionally used for describing natural images. The new model better
accounts for biases arising from the presence of large and strong edges in
the image. We use this model together with an accurate spectral whiten-
ing formula to estimate the power spectrum of the blur. The blur kernel
is then recovered using a phase retrieval algorithm with improved con-
vergence and disambiguation capabilities. Unlike many existing methods,
the new approach does not perform a maximum a posteriori estimation,
which involves repeated reconstructions of the latent image, and hence
offers attractive running times.
We compare the new method with state-of-the-art methods and report
various advantages, both in terms of efficiency and accuracy.

1 Introduction

In many practical scenarios, such as hand-held cameras or ones mounted on a
moving vehicle, it is difficult to eliminate camera shake. Sensor movement during
exposure leads to unwanted blur in the acquired image. Under the assumption of
white noise and spatially-invariant blur across the sensor this process is modeled
by

B(x) =
(
I∗k

)
(x) + η(x) (1)

where ∗ denotes the convolution operation, B is the acquired blurry image, k is
the unknown blur kernel and η(x) is a zero-mean, identically- and independently-
distributed noise term at every pixel x= (x, y). Blind image deconvolution, the
task of removing the blur when the camera motion is unknown, is a mathemat-
ically ill-posed problem since the observed image B does not provide enough
constraints for determining both I and k. Most deblurring techniques therefore
introduce additional constraints over I and k. The most common framework for
incorporating such prior knowledge is through maximum a posteriori (MAP)
estimation. Norms favoring sparse derivatives are often used to describe I as a
natural image [1–6]. While not failure-free, this approach was shown to recover
very complex blur kernels and achieve impressive deblurred results. However,
the maximization of these estimators is a time consuming task involving the
computation of the latent image multiple times.
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An alternative approach to the problem, which did not receive as much at-
tention, extracts the blur kernel k directly from the blurry image B without
computing I in the process. The basic idea is to recover k from the anomalies
that B shows with respect to the canonical behavior of natural images. Yitzhaky
et al. [7] compute the 1D autocorrelation of the derivative of B along the sen-
sor movement direction. Normally, image derivatives are weakly correlated and
hence this function should be close to a delta function. The deviation from this
function provides an estimate for the power spectrum (PS) of the kernel, |k̂(ω)|2.
Hu et al. [8] also follow this strategy for recovering the PS of two-dimensional
kernels and use the eight-point Laplacian for whitening the image spectrum. The
blur kernel is then computed using a phase retrieval technique [9] that estimates
the phase by imposing spatial non-negativity and compactness. This approach
consists of evaluating basic statistics from the input B and, unlike methods that
use MAP estimation, does not involve repeated reconstructions of I. While this
makes it favorable in terms of computational-cost, the true potential of this
approach in terms of accuracy was not fully explored.

In this paper we describe a new method for recovering the blur from irregu-
larities in the statistics of motion-blurred images. We derive and use a power-law
model to describe the PS of natural images, which refines the traditional ‖ω‖−2
law. This new model better accounts for biases arising from the presence of large
and strong edges in natural images. We use this model, as well as a more accurate
spectral whitening formula, to recover the PS of the blur kernel, |k̂(ω)|2, in a
more robust and accurate manner compared to previous methods following this
approach. We also describe a modified phase retrieval algorithm with improved
convergence and ability to resolve ambiguities.

Unlike methods that rely on the presence and the identification of well-
separated edges in the image, our purely statistical approach copes well with
images containing under-resolved texture and foliage clutter, which are abun-
dant in outdoor scenes. Similarly to [7, 8] we do not reconstruct the latent image
repeatedly and access the input image only once to extract a small set of statis-
tics. Thus, the core of our technique depends only on the blur kernel size and
does not scale with the image dimensions.

The experiments we report show that our method is capable of achieving
highly-accurate results, in various scenarios that challenge other approaches,
and compares well with the state-of-the-art. Our CPU implementation achieves
these results at running-times comparable to the fast method of Cho and Lee [10]
and considerably faster than MAP-based methods.

2 Previous Work

Much effort was put into removal of image blur due to camera motion. Blind-
deconvolution methods that recover the blur kernel k and the sharp image I rely
on various regularities natural images exhibit. The most-dominant approach for
tackling this problem, in the context of spatially-uniform blur kernel, is to formu-
late and solve a MAP problem. This requires the minimization of a log-likelihood
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term that accounts for Eq. (1) plus additional prior terms over the image I and
kernel k. Lagendijk et al. [11] use an autoregressive Gaussian prior for I(x) and
You and Kaveh [12] use a similar Gaussian prior over high-frequencies (deriva-
tives) of I. Both priors are blind to the phase content of k and are not sufficient
for recovering it. Hence, Lagendijk et al. further assume that the blur is symmet-
ric (zero phase) and You and Kaveh incorporate adaptive spatial weighting which
breaks this symmetry. Chan and Wong [1] replace the Gaussian image prior with
a Laplace distribution defined by the L1 norm over the image derivatives. This
choice is more consistent with the heavy-tailed derivative distribution observed
in natural images [13]. Levin et al. [4] show that this prior is not sufficient for
uniqueness and may result in degenerate delta kernels. Indeed, methods that
rely on sparse norms often introduce additional constraints such as smoothness
of the blur-kernel [1] and two motion-blurred images [14] or use alternative im-
age priors such as spatially-varying priors [3] and ones that marginalize over all
possible sharp images I(x) [2, 15]. To avoid the cost in computing marginalized
distributions, Krishnan et al. [16] propose a normalized prior that favors sharp
images over blurry ones. Levin et al. [6] reduce the marginalization cost by ap-
proximating the prior distribution via its mean and covariance. Gupta et al. [17]
and Whyte et al. [18] use the MAP formulation for non-uniform blur model that
accounts for more general camera motion.

Another line of works make a more direct use of the presence of sharp edges
in images for recovering the blur. Joshi et al. [19] detect salient edges in the
blurry image B and predict the underlying unblurred edges as ideal step edges.
This correspondence allows recovering a one-dimensional slice or projection of
k. In order to recover the complete kernel, this approach requires the availability
and successful detection of strong edges at a variety of orientations. The explicit
detection of edges limits this approach to unimodal blur kernels. Cho and Lee [10]
reconstruct the sharp edges using inverse-diffusion shock filtering and recover the
kernel efficiently in the gradient domain using fast Fourier transform. Xu and
Jia [20] propose a two-phase scheme that computes a coarse estimation of the
kernel from reconstructed sharp edges and then refine it iteratively. Cho et al. [21]
also detect edges and use the Radon transform to reconstruct the blur kernel,
given the projections of the blurry edges found. In [22] edges are modeled by a
two-color model which is tailored using local clustering. The sharp image is then
recovered by minimizing the color mixture. Jia [23] also relies on color mixtures
and extracts the blur kernel of moving objects given their boundary alpha map.

Lastly, we would like to mention recent techniques that use dedicated hard-
ware designed to acquire blur-free images. Ben-Ezra and Nayar [24] construct
a hybrid camera that measures its own motion during light integration using
another fast-shutter low-resolution camera. Raskar et al. [25] rapidly open and
close the shutter during exposure and thereby shape the blur kernel to pass more
high-frequency spatial details. Levin et al. [26] design a coded aperture which is
easier to invert and allows a better discrimination between the blurs resulting
from depths. Yuan et al. [27] use additional noisy yet unblurred short-exposure
image in order to recover the blur kernel. Levin et al. [28] show that in images
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captured by parabolic integration the blur of objects moving at different speeds
can be eliminated using a single kernel. In [29] a combination of gyroscopes and
accelerometers is used to estimate the camera acceleration and angular velocity
during exposure.

3 Background

Field [30] and Burton and Moorhead [31] point out the following power-law
describing the power spectra of images of natural scenes

|Î(ω)|2 ∝ ‖ω‖−β , (2)

for ω = (ωx, ωy) 6= (0, 0), where I is a natural image, Î its Fourier transform
and ω denotes the frequency coordinates. Various studies suggest that β ≈ 2,
and explain this behavior by the presence of edges and other fractal-like features
such as foliage and landscape. See [32] for a recent survey on the topic.

Compact second-order derivative filters, for example lx = [−1, 2,−1], provide
a good approximation for |ωx|2 especially at lower frequencies since

l̂x(ωx) = 2(cos(ωxπ)− 1) ≈ π2ω2
x +O(ω4

x), (3)

where the last equality is based on Taylor approximation of cosine around ωx = 0.
The four-point Laplacian filter1 is given by the sum l = d̄x∗dx + d̄y∗dy, where

dx = [1,−1] and dy = d>x . Therefore l̂(ω) ≈ π2(ω2
x + ω2

y) ∝ ‖ω‖2. We use the

bar sign ·̄ to denote signal mirroring, i.e., d̄(x) = d(−x).
Let us denote by d the ‘square-root’ filter of l which is defined as the sym-

metric filter giving l = d̄∗d. This factorization exists for every symmetric filter
with non-negative frequency response, i.e., l̂(ω) ≥ 0. Filtering an image obey-
ing Eq. (2) with d results in a signal with whitened spectrum, since

|
(̂
I∗d

)
(ω)|2 = |Î(ω)|2 ·|d̂(ω)|2 = |Î(ω)|2 · l̂(ω) ≈ π2‖ω‖−2‖ω‖2 = c, (4)

for some constant c, where the equality |d̂(ω)|2 = l̂(ω) is the Fourier analog of
l = d̄∗d. Thus, in the case of a blurry image B = I ∗ k, this procedure can be
used to obtain the following estimate of the blur-kernel PS,

|
(̂
B∗d

)
(ω)|2 = |Î(ω)|2 · l̂(ω)·|k̂(ω)|2 ≈ c |k̂(ω)|2. (5)

The Wiener−Khinchin theorem relates the PS of any signal J to its autocorre-
lation by

R̂J(ω) = |Ĵ(ω)|2, (6)

1 The four-point Laplacian filter is given by l(0, 0) = 4 and l(x, y) = −1 at x and y
that |x|+|y| = 1 and zero otherwise. The eight-point Laplacian is given by l(0, 0) = 8
and l(x, y) = −1 when |x|, |y| ≤ 1 (|x|+ |y| > 0) and zero otherwise.
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Fig. 1. Shows (a) non-blurred natural image, (b) its PS which has radial streaks of
increased magnitudes, (c) 1D log-log plots of the PS along its (red) vertical, (blue)
horizontal and (black) diagonal cross-sections. These plots differ by roughly an additive
constant which corresponds to a multiplicative scalar in terms of the PS. (d) shows the
PS of the image whitened with the Laplacian root filter d and (e) its autocorrelation
in real-space, followed by (f,g) the same functions of the image whitened using the
Laplacian filter itself (as used by [8]). The power spectra shown in this figure were
mapped using logarithm for better display.

where the autocorrelation (autocovariance) is defined by RJ(x) = (J̄ ∗ J)(x).
This identity introduces real-space counterparts for the spectrum whitening in
Eq. (4) and the blur approximation in Eq. (5), that are given by

RI∗d(x) ≈ cδ(x), and RB∗d(x) ≈ cRk(x), (7)

respectively, where δ is the Dirac’s delta-function, i.e., δ(0, 0) = 1 and zero
otherwise.

Yitzhaky et al. [7] exploit this regularity in natural images and recover the

power spectra of one-dimensional blur kernels |k̂(ω)|2 by differentiating the im-
age along the blur direction (which they also estimate). In order to obtain the
complete kernel k, they estimate its phase using the Hilbert transform under
the assumption of minimal-phase blur. Hu et al. [8] use this regularity to re-
cover general two-dimensional kernels by whitening the image spectrum using
the eight-point Laplacian filter1. Given the estimated |k̂|2, they compute k by
recovering its phase using the error-reduction phase-retrieval algorithm [9].

While Eq. (2) models well certain images, the presence of long edges, both
in natural and man-made scenes, undermines its accuracy. Fig. 1 shows two
such cases where the power spectra show increased magnitudes along radial
streaks which are orthogonal to the strong image edges. These streaks break
the rotational symmetry predicted by Eq. (2). Analogously, the autocorrelation
functions of these images, after being whitened with d, or l as used by Hu et
al. [8], differ considerably from the delta function, predicted in Eq. (7), along
the directions of the strong edges. Clearly, such deviations from the power-law
in (2) undermine the accuracy of the recovered |k̂|2 from Eq. (5), or equivalently
Rk recovered from Eq. (7).
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true kernel PS autocorr. B(x)d(x) PS of B(x)d(x) PS of B(x)l(x) our recovered PS

Fig. 2. Comparison between different spectral whitening procedures on an image con-
taining strong horizontal edges.

The question is, therefore, how does this discrepancy behave. To answer
this, we plot the cross-sections of the PS along the most extreme orientations.
The log-log plots of these 1D functions, shown in Fig. 1, can be approximately
described by an additive offset which means that the PS of a natural image vary
by multiplicative factors along different directions, i.e.,

|Î(ω)|2 ≈ cθ(ω) · ‖ω‖−2, (8)

where θ(ω) = tan−1(ωx, ωy) is the angle of the vector ω.
In Fig. 2 we show the kernel PS estimated by whitening the image with d and

l, and by using our method which relies on the refined power-law in Eq. (8). In
the next section we describe an algorithm for recovering the blur kernel based on
this model, i.e., solve for both cθ(ω) and the kernel phase, given autocorrelation
functions computed from the input blurry image B(x).

Finally, we would like to review the Fourier slice theorem which will become
instrumental for us and is given by

̂(Pθ(J)
)
(ω) = Ĵ(ωrθ), (9)

where Pθ(J) is a projection of a 2D signal into 1D by integrating it along the
direction orthogonal to θ and rθ is a unit vector in 2D with the orientation of θ.
Thus ωrθ parameterizes with orientation of θ using the scalar ω. When applying
this theorem in our context we get

̂(RPθ(I))(ω) = | ̂
(
Pθ(I)

)
(ω)|2 = |Î(ωrθ)|2 ≈ cθ · |ω|−2, (10)

where the first equality follows from the Wiener−Khinchin theorem which ap-
plies between the 1D autocorrelation of the projected image Pθ(I) and its power
spectrum in 1D Fourier space. The last equality follows from Eq. (8) where the
restriction to a single slice leaves only a single unknown cθ.

4 New Method

Given a blurry image B = I ∗ k, the relation in Eq. (10) allows us to recover

|k̂(ωrθ)|2 up to a single scalar cθ by

̂(
Rd∗Pθ(B)

)
(ω) = l̂(ω)·|B̂(ωrθ)|2 = l̂(ω)·|Î(ωrθ)|2·|k̂(ωrθ)|2 ≈ cθ·|k̂(ωrθ)|2. (11)
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B(x)  R        (x)d  P (B)* θ
f (x)
θ =  f (x)

θ( c
θ

m )
θ

+ / |k(ω)|
2^

k(x) I(x)

(a) (b) (c) (d) (e) (f)

Fig. 3. Overview of the proposed method; (a) Input blurry image, (b) the 1D auto-
correlation functions of the differentiated projections of the blurry image. Each row
corresponds to a projection along a different θ. (c) shows the recovered correlations
using the estimated cθ and mθ. The power spectrum recovered using the fourier slice
theorem is shown in (d), where the slice marked in yellow corresponds to the the 1D
Fourier transform of the marked row in (c). The kernel computed by the phase retrieval
algorithm is shown in (e) and finally the deblurred image in (f). Note that our EM-like
kernel recovery procedure iteratively computes (c-e).

We use d = [3,−32, 168,−672, 0, 672,−168, 32,−3]/840 which is a nine-point
1D differentiation filter (applied to the projected blurry image B in 1D). The

resulting 1D Laplacian l = d̄ ∗ d has an accuracy of l̂(ω) = ω2 +O(ω8). This can
be written in real-space, once again using the Wiener−Khinchin theorem, as(

Rd∗Pθ(B)

)
(x) ≈ cθ ·RPθ(k)(x) (12)

Thus, the first step of our algorithm is to compute fθ(x) = Rd∗Pθ(B)(x) for

every angle θ. Since we want to recover |k̂|2 on a grid of pixels, we pick angles
θ that result in slices passing exactly through each pixel. Figure 3 shows an
example of these functions. We implemented the projection operator Pθ using a
nearest-neighbor sampling which achieved higher accuracy and runs in less time
compared to other interpolation formulae we tested.

The resulting projected values correspond to averaging of a large number of
pixels, proportional to the image dimensions n. The averaging of the independent
noise terms η(x) in Eq. (1) results in a noise reduction by a factor of 1/

√
n.

Therefore we ignore the noise present in fθ(x).

Estimating |k̂(ω)|2 slice-by-slice according to Eq. (12) introduces a set of

unknowns cθ, which are common to all values of |k̂|2 along the same angle θ.
Additionally, the mean value of the projected slices Pθ(B) is lost due to the

differentiation with d in Eq. (11), or equivalently k̂(0rθ) = k̂(0, 0) is missing in
all the slices we compute. Let us denote these missing mean values by mθ/cθ
and get altogether that (fθ(x) + mθ)/cθ ≈ RPθ(k)(x). Therefore given fθ(x) we
need to estimate cθ and mθ in order to recover RPθ(k)(x).

We recover these values based on the following three kernel modeling as-
sumptions:

1. Camera blur kernels are proportional to the time period in which light is
integrated at each camera offset as it moves during exposure. Thus, these
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numbers are all non-negative, i.e., k ≥ 0, and so is its projection Pθ(k) and
the 1D autocorrelation function RPθ(k).

2. Since the camera motion during exposure is finite, the blur kernel support
must be compact. Similarly to the positivity case, the compact support is
also inherited by Pθ(k) and RPθ(k). Thus, for each θ we have sθ such that
for every |x| ≥ sθ there is RPθ(k)(x) = 0.

3. We can assume that the camera blur does not affect the total amount of light
reaching the sensor, and get that

∫
k(x)dx = 1. This remains to be the case

for the projected kernel, i.e.,
∫
Pθ(k)(x)dx = 1, meaning that P̂θ(k)(0) = 1.

Finally, since |P̂θ(k)|2(0) = 1, we also get that
∫
RPθ(k)(x)dx = 1.

Assuming we have the support extents sθ we set mθ = −fθ(sθ), based on
the second assumption that RPθ(k)(sθ) = 0. We then define gθ(x) = fθ(x) +mθ

for |x| ≤ sθ and zero otherwise. We make sure that gθ ≥ 0 according to the first
assumption above, by setting the negative values in gθ within [−sθ, sθ] to zero.
Finally, we recover cθ based on the third assumption by setting cθ =

∫
gθ(x)dx.

Altogether, we expect that gθ(x)/cθ ≈ RPθ(k)(x).
By repeating this procedure for all the θ we are considering, we obtain an

approximation for the full 2D blur-kernel PS function |k̂(ω)|2. We use this ap-
proximation to recover the blur kernel k using a phase-retrieval algorithm that
we describe in Section 4.1. An actual example of this process is shown in Fig. 3.
We conclude this section by explaining how the kernel support variables sθ are
determined and outlining the entire algorithm for kernel recovery.
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Our algorithm consists of an iterative EM-
like procedure where we switch between esti-
mating the kernel k(x) given the support vari-
ables sθ and estimating sθ from the recovered
k(x). We start this procedure with the initial
guess sθ = argminx fθ(x). Then, given the re-
trieved kernel we update these values by setting
sθ = argmaxx(RPθ(k)(x) > 0.1 · max(RPθ(k))).
The inset at the right shows the progression of sθ along these iterations and
Alg. 1 summarizes our method.

Algorithm 1: Iterative kernel recovery.

Input: blurry image B;
calculate fθ = Rd∗Pθ(B);
set sθ = argminx fθ(x);
for i=1..Nouter do

estimate |k̂|2 given sθ;

estimate kernel using phase retrieval Alg. 2 given |k̂|2;
update sθ = argmaxx(RPθ(k)(x) > 0.1 ·max(RPθ(k)));

end
Output: recovered blur kernel k;
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input error reduction our

Fig. 4. Comparison between the classic error-reduction phase retrieval versus our al-
gorithm in Alg.2.

4.1 Phase-Retrieval

Recovering the kernel k, given its power spectrum |k̂|2 requires estimating the

phase component of k̂(ω). There are quite a few algorithms that retrieve a signal
or its phase given its power spectrum and additional constraints, such as the
signal being positive and of limited spatial support. Largely speaking, these
algorithms iteratively switch between Fourier and real-space domains to enforce
the input PS and spatial constraints respectively.

Fienup [9] describes and compares several such algorithms, including the
error-reduction algorithm used by Hu et al. [8]. According to Fienup and our
own experience this algorithm tends to stagnate despite being far from a solu-
tion. Indeed, Fienup suggests an alternative strategy (that alternates between
the error-reduction and another method called hybrid input-output) that avoids
this problem. Luke [33] proposes a different variant, called Relaxed Averaged Al-
ternating Reflections (RAAR), which we found to be more stable and converge
more quickly.

Luke’s algorithm treats the input PS as a hard-constraint and requires the
recovered signal to possess this PS in full. This approach is less robust to noise or
inaccuracies in the input PS and leads to oscillations between different configura-
tions (as there might not be a real positive signal with limited support that have
the exact input PS). In order to improve the performance on inaccurate input
PS, we relax this requirement by treating the input PS as an attraction point
instead of enforcing it (by averaging the current PS with the input). We find
that this leads to a better exploration of this space and reduces the oscillations.

The input PS |k̂|2 and the spatial constraints may not guarantee a unique
solution [34]. Moreover, and as Fienup discusses, such algorithms may converge
to local minima configurations. Therefore, we repeat this procedure multiple
times, starting from different random guesses for the phase component. Among
the resulting solutions, we choose the one that maximizes the L1/L2 likelihood
proposed by Krishnan et al. [16] when evaluated in a small window (100-by-100
pixels) of the image B(x). In this step we test each kernel and its reflection to
disambiguate this symmetry.

We summarize our phase retrieval algorithm in Alg. 2. We used the values
α = 0.95 and β0 = 0.75 in the code to produce the results reported in the paper.
In Fig. 4 we compare between the error-reduction algorithm and our procedure.
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Algorithm 2: Phase retrieval algorithm.

Input: estimated kernel magnitude spectrum, p(ω) = |k̂(ω)|, kernel size s;
for n=1 .. Nguesses do

// initiate the phase φ(ω) randomly;
sample φ(ω) uniformly from [−π, π] ;
// switch to real-space using inv. Fourier trans.;

g = F−1(p · eiφ);
for m=1 .. Ninner do

// apply Fourier domain constraints;

g2 = F−1((αp+ (1− α)|ĝ|) · ei·Phase(ĝ));
// apply space domain constraints;
R(x) = 2g2(x)− g(x) ;
β = β0 + (1− β0)(1− exp (−m/7)3) ;
Ω = {x : R(x) < 0} ∪ {x : x /∈ [0, s]× [0, s]} ;

g(x) =

{
βg(x) + (1− 2β)g2(x) if x ∈ Ω

g2(x) if x /∈ Ω ;

end
Ω = {x : g2(x) < 0} ∪ {x : x /∈ [0, s]× [0, s]} ;

kn(x) =

{
0 if x ∈ Ω

g2(x) if x /∈ Ω ;

end
Output: kn with highest likelihood defined in [16] when deconvolving a small
window;

5 Results

We implemented the phase retrieval and the projection operator P in C++
and the rest of our algorithm is implemented in Matlab. To produce the results
presented here, we used three outer iterations (Nouter) in Alg. 1, started the
phase retrieval with 30 different initialization (Nguesses) in Alg. 2 and run each
300 inner iterations Ninner. With this number of iterations and given fθ(x),
it takes our method about 13 seconds to recover the kernel independently of
the image size. Calculating fθ(x) involves projecting the image along various
directions θ. Running this for all the angles required to reconstruct kernels of
30-by-30 pixels, takes about 2 seconds on a one-megapixel image. This number
grows linearly with the image and kernel size. Running the phase retrieval from
different initializations can be done in parallel. Similarly, projecting the image
along each direction can be computed independently. Thus, we expect to achieve
even faster running-times with a GPU implementation. We used the non-blind
deconvolution of [5] to generate all the deblurred images shown here.

We compared between the methods of Cho and Lee [10], Levin et al. [6],
Krishnan et al. [16] and ours over a database containing eight images, four of
which contain man-made scenery and another four that do not. We blurred each
of these images, according to Eq. (1) with Gaussian noise with σ = 0.5%, using
nine blur kernels that include the benchmark kernels used by [4]. We did not use
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Fig. 5. Results obtained from a synthetic database of eight images and nine blur ker-
nels. We show here three examples of recovered kernels and deblurred images. The
graphs show the deconvolved-image metric introduced in [4] evaluated on these im-
ages as well as the scores obtained for the two image classes. Photos courtesy of Ryan
Bushby, On The Go Tours, and Cooking in Tounges.

the 255-by-255 gray-scale images used in [4] as this resolution does not provide
reliable statistics and does not reflect nowadays real-world photos.

Fig. 5 shows a quantitative comparison between the different methods on
this dataset using the deconvolved-image metric introduced in [4]. This metric
consists of an error ratio given by ‖Iout − Igt‖2/‖Ikgt − Igt‖2, where Iout is
the image deblurred by the estimated kernel, Ikgt is the image obtained by
deconvolving with the ground-truth kernel and Igt is the ground-truth image.
The metric indicates the percentage of images with ratios below a specified ratio.

The scores in Fig. 5 indicate that our method meets the accuracy of Levin et
al. [6] with an advantage on man-made scenes. Our method achieves these results
at significantly faster running times. The accuracy achieved by our method is
comparable to the one Cho and Lee [10] achieve on man-made scenes. In this
figure we show three images (and kernels) that participated in this experiment
and the estimated kernels and deblurred results.

We evaluated our method against [6, 10, 16] as well as Cho et al. [21] on images
acquired with camera blur. We show the kernels estimated by the different meth-
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Fig. 6. Kernels estimated by different methods and the resulting deblurred images.

ods and the resulting deblurred images in Fig. 6. This test shows our method’s
robustness to foliage clutter and its ability compete with the state-of-the-art.

6 Conclusions

We presented a new method for recovering the blur kernel in motion-blurred nat-
ural images based on the statistical deviations they exhibit in their spectrum.
Our method extracts a set of statistics from the input image, after properly
whitening its spectrum, and uses them to recover the blur. Thus, it achieves fa-
vorable running-times compared to other methods that perform MAP estimation
and recover the latent image repeatedly in the course of estimating the kernel.

The algorithm is based on a more refined model that we derived for modeling
the power spectra of natural images. This model accounts for the presence of
strong and long edges in the image and makes it possible to recover the blur in
such scenarios. Our statistical approach does not rely on the presence nor the de-
tection of well-defined step edges, needed at multiple orientations, as required by
other methods [10, 21]. Finally, we described a modification that makes standard
phase retrieval algorithms more robust to inaccuracies in the input.

As our algorithm relies on the canonical behavior of natural images, it is re-
stricted to this class of images. Furthermore, since it estimates various statistics
from the image, it cannot operate on small images where these statistics are
unreliable. Our tests show successful operation on images of 512-by-512 pixels
which fall well below the resolution of current digital cameras. Similarly to other
methods that rely on the spatially-uniform blur, assumed in Eq. (1), the perfor-
mance of our method deteriorates as the spatial variability of the blur increases.
This is the case when the camera motion contains rotation around its principal
axis or in images with significant focal blur.

As future work we intend to follow this approach of non-MAP blur kernel
estimation and consider other statistical regularities that can be exploited for
this purpose.
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